2012-2013 Algebra Academy

Exploring Student's Mathematical Thinking Probing the Math Needed for Algebra for Special Education Staff of District 287 \& Member Districts

Wednesday, Sept. 19 (Room 321)
EQUALITY
Wednesday, Nov. 7 (Room 321) MODELING WORD PROBLEMS
Wednesday, Dec. 12 (Room 321) RELATIONAL THINKING
Wednesday, Jan. 16 (Room 321) OPERATIONS \& BASIC FACTS
Wednesday, Feb. 27 (Room 321) FRACTIONS AND DECIMALS
Wednesday, May 1 (Room 321)
REASONING

Facilitators: Nancy Nutting Mary Peters
Christina Shidla Scott Swanson
nancynutting@comcast.net mkpeters@district287.org cashidla@district287.org saswanson@district287.org

Make a Note . . .

287 Mathematics Website - Algebra Academy
Check for session handouts, assessments, templates \& other resources http://courses.district287.org/mod/page/view.php?id=10229

Krypto http://mphgames.com
Illuminations (NCTM)
Prímary Krypto: http://illuminations.nctm.org/ActivityDetail.aspx?ID=173 Pan Balances: http://illuminations.nctm.org/ActivityDetail.aspx?ID=26 (search also for Shape and Expressions Pan Balances)

Sources for Pan and Number Batances: about \$13-\$23 each, Nasco.com, amazon.com, WonderBrains.com, eaieducation.com (best price)

AGENDA	INSTRUCTIONAL STRATEGIES
Overview of Academy Talking Trios What is Mathematical Power? Equal 9 \& Krypto Students and the Equal Sign Benchmarks for Equal Sign Video Clip - Kevin Balancing Expressions Video Clip - $4^{\text {th }}$ Grade Class Equation Chains Lunch The Clothespin Card True/False Equations Open Number Sentences (Make it True) Equal or Not Equal Assessments PLC Structure Standards by Progression SciMath ${ }^{\text {MN }}$ Frameworks for Math Feedback	- Krypto/Equal \# posters - Increasing the variety of equation formats - Using "is the same as" language along with "equals" - Using balances - Using equation chains - Using clothespin cards - Using true/false \& open number sentences (make it true) - Using = and \neq

Program Facilitor for Professional Learning
Jennifer Nelson jInelson@district287.org 763-550-7241
287 Mathematics Website - Algebra Academy
Check for session handouts, assessments, templates \& other resources http://courses.district287.org/mod/page/view.php?id=10229

What does it mean for a student to be mathematically powerful?

KRYPTO for older students

Draw 5 numbers from a half deck of cards.
Draw a $6^{\text {th }}$ number for the target number.
Students create equations and record on table posters or contribute to a poster on the board.

You can use 2 of each digit, 1-10 from a deck of cards or use a Krypto deck (numbers 1-25 with 2 of each number 1-10) or use a number deck. Half a deck may be more manageable but you can try a full deck, too!

http://illuminations.nctm.org

Go to activities tab, search for Krypto.

29745 Target 3

Primary Krypto uses just the digits 1-10.

What do each of these equal on your calculator? $3+4 \times 5=? \quad 35 \text { or } 23 ? \quad 10-6+5=?-1 \text { or } 9 ?$	
Parenthesis \& Exponents PE Please Excuse	
Mult \& Divide (in order) MD My Dear	人L
	\% 8
Not all calculators operate the same. Arithmetic order vs. order of operations. Test your calculator with $3+4 \times 5$. If you get $\mathbf{2 3}$ your calculator follows the order of operations.	<

Spotlight on Research

$$
8+4=\square+5
$$

What would students say belongs in the box?
What does belong in the box?

	$\mathbf{7}$	12	17	12 \& 17	other
Gr. 1 \& 2					
Gr. 3 \& 4					
Gr. 5 \& 6					

NCISLA inBrief: "Building a Foundation for Learning Algebra," Fall 2000, http://ncisla.wceruw.org/publications/briefs/fall2000.pdf.
Carpenter, Franke and Levi. (2003). Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School. Heinemann: Portsmouth, NH www.heinemann.com
Falkner, Levi and Carpenter. "Children's Understanding of Equality: A Foundation for Algebra."
Teaching Children Mathematics. December 1999. www.NCTM.org

What if the problem were presented as:

$$
\begin{array}{lll}
8+\square=7+5 & \text { or } & 8+4=7+\square \\
8+4=k+5 & \text { or } & 8+4=7+n
\end{array}
$$

Benchmarks in Student Thinking About The Equal Sign
 =

1. BASIC NUMBER SENTENCE SENSE

Children begin to write number sentences and describe their thinking about the equal sign. They begin to see that numbers or expressions on one side of the equal sign are the same amount as numbers or expressions on the other side.

2. EXPERIENCE WITH A VARIETY OF EQUATION TYPES

Children accept as true number sentences that go beyond the form
$a+b=c$. They understand that equations in these forms might be true:

$$
\begin{gathered}
7=3+4 \\
2+8=5+5 \\
356+42=354+44
\end{gathered}
$$

3. CALCULATING TO DETERMINE TRUTH (Operational Thinking)

Children recognize that the equal sign separates two equal values. They carry out calculations to determine that the two sides of an equation are equal or not equal.

Children need to calculate both sides to fill in the missing value.
4. RELATIONAL THINKING

Children compare the expressions on each side of the equation and check for truth by identifying relationships among numbers and reasoning instead of actually carrying out the calculations.

$$
8+4=\ldots+5
$$

" 7 is the missing number because 5 is one more than 4 , so I need a number that is one less than 8."

Adapted from: Carprenter, Franke and Levi. Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School. Heinemmann. Portsmouth, NH 2003 www.heinemann.com

Equation given to student:	Kevin - Kgn.
$4+5=\square+3$	Wideo Snapshot (DVD 1.1) (CD 2.1) the equal sign?

Name \qquad

What do you notice?

Name \qquad Date \qquad

What do you notice?
\qquad Date \qquad

What did you notice?
\qquad
\qquad
$34+\square=13+13+13$

$62+\square=23+23+23$

What did you notice?
\qquad Date \qquad

What did you notice?

Name \qquad Date \qquad

Prove each of the above equations with a drawing below.

Prove each of the above equations with a drawing below.

What did you notice?

Name \qquad Date \qquad

$$
8 x+7=8 x+\ldots+3
$$

What did you notice?

Professional Development in Mathematics for Special Education Staff, 2012-13 Intermediate District 287

Name \qquad Date \qquad

What did you notice?

Professional Development in Mathematics for Special Education Staff, 2012-13
Intermediate District 287

Name \qquad Date \qquad

What did you notice?

14
Professional Development in Mathematics for Special Education Staff, 2012-13
Intermediate District 287

Name \qquad Date \qquad

What did you notice?

15
Professional Development in Mathematics for Special Education Staff, 2012-13
Intermediate District 287

Some comments on the equal sign . . .

What is wrong with this notation?

$$
8+4=12+5=17
$$

A "goes to arrow" is used to track ongoing thinking.

$$
8+4 \rightarrow 12+5 \rightarrow 17
$$

An "equation chain" can use multiple equal signs if the expressions surrounding any equal sign are equal to each other. For example, children might generate many ways to make 10 and write the following "equation chain":

$$
10=6+4=7+3=20-10=100-90=7+2+1
$$

Consider having students create chains on adding machine tape to encourage flexible thinking about a given quantity and expressions that represent that amount.

INTRODUCING TRUE OR FALSE WORK WITH EQUATIONS

It is difficult to sort out exactly why misconceptions about the meaning of the equal sign are so pervasive and so persistent. A good guess is that many children see only examples of number sentences with an operation to the left of the equal sign and the answer on the right and they over generalize from those limited examples.

Carprenter, Franke and Levi. Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School. Heinemmann. Portsmouth, NH 2003 www.heinemann.com p. 22

The Clothespin Card

$6+4=10$	$0+10=10$	$10=6+4$
$4+6=10$	$1+9=10$	$10=4+6$
	$2+8=10$	
$7+3=10$	$3+7=10$	$10=7+3$
$3+7=10$	$4+6=10$	$10=3+7$
	$5+5=10$	
$5+5=10$	$6+4=10$	$10+5+5$
	$7+3=10$	
$2+8=10$	$8+2=10$	$10=2+8$
$8+2=10$	$9+1=10$	$10=8+2$
	$10+0=10$	
$9+1=10$		$10=9+1$
$1+9=10$		$10=1+9$
$10+0=10$		$10=10+0$
$0+10=10$		$10=0+10$

\checkmark Algebrafy basic facts by the questions you ask: e.g. How do you know you have found all the combinations?
\checkmark Use true/false equations to tease out different formats for equations
\checkmark "Math people can do things forwards and backwards - as long as they tell the truth!"

True or False?
 Order from Easiest to Hardest for Student Thinking

T or F? $3+8=10$	T or F? $73+56=71+54$
T or F? $10=3+7$	T or F? $68+58=57+69$
T or F? $5+5=3+7$	T or F? $37+56=37+58$
T or F? $1+4+5=5+5$	T or F? $87+45=88+46$
T or F? $10=3+5$	T or F? $234+578=234+578+8$
T or F? $10=5+3+3$	T or F? $94+87-38=94+85-36$
T or F? $10=1+5+4$	T or F? $59+63=69+53$
T or F? $37 \times 54=35 \times 54+2 \times 54$	T or F? $21 / 2+3 / 4=31 / 4$
T or F? $20 \times 54=40 \times 108$	T or F? $53 / 4+1 / 2=53 / 4$
T or F? $5 \times 48=10 \times 24$	Tor F? $123 / 4+21 / 4=151 / 4$
Tor F? $64 \div 14=32 \div 7$	T or F? $61 / 2+3 / 4=7$
T or F? $42 \div 32=84 \div 32$	T or F? $3 / 4+1 / 2=11 / 4$
T or F? $48 \div 24=24 \div 12$	T or F? $10=51 / 2+5 \frac{1}{2}$
T or F? $40 \times 60=480 \times 6$	T or F? $11 / 4+1 / 4=11 / 2$

Adapted from: Carprenter, Franke and Levi. Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School. Heinemmann. Portsmouth, NH 2003 www.heinemann.com

A Week's Worth of True or False or Open Number Equations for My Students

Monday	
Tuesday	
Wednesday	
Thursday	
Friday	

Which Symbol Makes the Sentence True?

	$=$ or $\neq \boldsymbol{\prime}$	
6		6
5		6
13		31
27		72
1,329		$3 / 6$
$1 / 2$		$4 / 5$
.75		$3 \cdot 100+36 \cdot 10+3$
363		$3 \cdot 100+6 \cdot 100+3$
363		
3,063		

What did you notice?
\qquad Date \qquad
Which Symbol Makes the Sentence True?
$=$ or \neq
equal or not equal

	$=$ or \neq	
$4+1$		5
$4+2$		5
$6+1$		4
$3+1$	4	
$3+2$		3
$2+1$	6	
$5+1$		

What did you notice?

\qquad Date \qquad
Which Symbol Makes the Sentence True?
$=$ or \neq
equal or not equal

	$=$ or \neq	
6		$5+1$
6		$5+2$
4		$3+1$
3		$4+1$
5		$4+2$
5	$6+1$	
7		

What did you notice?
\qquad Date \qquad
Which Symbol Makes the Sentence True?
$=$ or \neq
equal or not equal

	$=$ or \neq	
$24+10$		34
$22+10$		34
$35+10$		55
$45+10$		55
$37+20$		67
$47+20$		95
$55+40$		

What did you notice?
\qquad Date \qquad
Which Symbol Makes the Sentence True?

	= or \neq	
$343+541$		$340+544$
$343+541$		$350+540$
$343+549$		$350+542$
$738+243$		$740+241$
$541-343$		$540-342$
$738-243$		$735-245$
$738-243$		$740-241$
$1003-697$		$1006-700$

What did you notice?
\qquad Date \qquad

Which Symbol Makes the Sentence True?

$$
\begin{array}{lc}
= & \neq \\
\text { equal } & \text { not equal }
\end{array}
$$

	$=$ or \neq	
$3(4+6)$		$3 \cdot 4+3 \cdot 6$
$7(4+5)$		$7 \cdot 4+5$
$8(3+4)$		$8 \cdot 7$
$36 \cdot 3+36 \cdot 4$		$56(3 \cdot 4)$
$7 \cdot 6 \cdot 5$		$42 \cdot 25$
$42 \cdot 2 \cdot 5$		$42 \cdot 10$
$42 \cdot 2 \cdot 5$		$5 \cdot 2 \cdot 33$
$10 \cdot 66$		

What did you notice?
\qquad Date \qquad

Which Symbol Makes the Sentence True?
 $=$ or \neq
 equal or not equal

	= or \neq	
$1 / 2$		$4 / 8$
$1 / 2$		$2 / 4$
$1 / 2$		$7 / 8$
$1 / 2$		$1 / 4$
$1 / 2$		$6 / 12$
$1 / 2$		$7 / 12$
$1 / 2$		$3 / 6$

What did you notice?
\qquad Date \qquad

Which Symbol Makes the Sentence True?
 $=\quad \neq$
 equal not equal

What did you notice?

\qquad Date \qquad

Which Symbol Makes the Sentence True?

$=\quad \neq$
equal not equal

What did you notice?

Name \qquad Date \qquad

Which Symbol Makes the Sentence True?

 equal not equal

	= or \neq	

What did you notice?

References

Chapin, Suzanne H. et. al. Classroom Discussions: Using Math Talk to Help Students Learn. 2003. Math Solutions Publications. www.mathsolutions.com

Carpenter, Thomas P., Elizabeth Fennema, Megan Loef Franke, Linda Levi \& Susan B. Empson. Children's mathematics: Cognitively guided instruction 1999 Portsmouth, NH: Heinemann. (Book and CD) www.heinemann.com

Carpenter, Thomas P., Megan Loef Franke and Linda Levi. Thinking Mathemtically: Integrating Arithmetic \& Algebra in Elementary School. 2003. Portsmouth, NH: Heinemann. www.heinemann.com

Falkner, Karen, Linda Levi and Thomas P. Carpenter. "Children's Understanding of Equality: A foundation for Algebra." In Teaching Children Mathematics, December 1999. National Council of Teachers of Mathematics www.nctm.org

Heibert, James. Making Sense: Teaching and Learning Mathematics with Understanding. 1997. Heinemann. www.heinemann.com

Knuth, Eric J., Martha W. Alibali, Shanta Hattikudur, Nicole M. McNeil, and Ana C. Stephens. "The Imortance of Equal Sign Understanding in the Middle Grades" in Mathematics Teaching in the Middle Grades, May 2008. National Council of Teachers of Mathematics www.nctm.org

Ma, Liping. Knowing and Teaching Elementary Mathematics. 1999. Lawrence Erlbaum Associates. www.erlbaum.com

National Research Council. Adding It Up: Helping Children Learn Mathematics. 2001. National Academy Press. www.nap.org

National Research Council. Helping Children Learn Mathematics. 2002. National Academy Press. www.nap.org

National Research Council. How Students Learn: History, Mathematics and Science in the Classroom. 2005. National Academy Press. www.nap.org - can download chapters

